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Magnetothermal instabilities in an organic superconductor
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Abstract. We have studied the occurrence of magnetothermal instabilities in a
κ−(BEDT−TTF)2Cu[N(CN)2]Br single crystal during field sweep magnetization experiments, equivalent
to short time relaxation studies. We find instability behaviour in good agreement with a recent model
by Mints, for a non-linear E(J) characteristic. In particular, we find that a decrease of the dynamic
relaxation rate, characterizing the effective activation energy, precedes the unstable regime. We point out
formal analogies between such instabilities and the general predictions for flux avalanches.

PACS. 74.60.Ge Flux pinning, flux creep, and flux-line lattice dynamics – 74.70.Kn Organic
superconductors

Magnetothermal instabilities (flux jumps) from the
critical state have been observed and modeled since the
discovery of type-II superconductors with high critical cur-
rents (originally referred to as “hard superconductors”) in
the 1960s. The models which establish the stability crite-
rion for the critical state all consider coupled electromag-
netic and thermal equations. The flux jump is described
as an amplification process, where a temperature rise in-
duces a decrease of the critical current density, an entry
of magnetic flux and an additional temperature increase.
The earlier models assumed a linear current-voltage char-
acteristic and two limiting cases were considered. The first
one assumes that the flux diffusion is adiabatic, i.e. that
the magnetic flux diffusion constant, DM , is much larger
than the thermal one [1–3]. The opposite case, which is
referred to as the dynamic approximation, was consid-
ered later [4]. These modelations made clear that a way
to eliminate flux jumps is to reduce the superconductor
dimensions transverse to the magnetic field, as is done in
multifilamentary wires. Many observations were made of a
dependence of the occurrence of instabilities upon the field
sweep rate, which could not be interpreted using a linear
current-voltage characteristic [5]. Mints and Rakhmanov
[6] showed, within the adiabatic approximation, that a
non-linear characteristic could account for this observa-
tion. Recently, Mints [7] considered a logarithmic current-
voltage characteristic, as obtained from several models for
flux creep in the high current density limit. For parame-
ter values typical of the high Tc materials, he finds that
the dynamic approximation should be valid for magne-
tization measurements at a constant sweep rate and he
derives the stability criterion in this case. Finally, Mints
showed that the oscillations sometimes observed prior to
the flux jumps can be deduced from the coupled electro-
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magnetic and thermal equations [8]. The observation of
flux jumps in the magnetization of some high Tc super-
conductors revived the interest for these early models. In
his review of magnetic instabilities in high Tc supercon-
ductors [9], Wipf finds a general agreement between the
adiabatic model and the data for YBa2Cu3O7−δ obtained
by Tholence et al. [10], although he admits that the ob-
served dependence of the occurrence of the instabilities
with the field sweep rate appeals for some corrections. An
extensive study of the thermal oscillations and jumps in a
granular sample of YBa2Cu3O7−δ was given in [11]. These
authors, in contrast to the approximations made by Mints
[7], used a quadratic dissipation term in their analysis of
their data (flux flow regime). As a consequence, the flux
jumps and the oscillation periodicity are predicted to de-
pend on different powers of the field sweep rate than the
ones given in [7]. However, the data presented in reference
[11] are either inconclusive or in contradiction with the
predictions of the model given by the authors. As pointed
out by Mints and Rakhmanov [5], very few experimental
data lend themselves to a precise comparison with the-
ory. The main reasons for this are generally uncontrolled
perturbations during experiments and poor knowledge
of the various material parameters involved. In this pa-
per, we report on magnetization instabilities during field
sweep on a single crystal of the organic superconductor
κ−(BEDT−TTF)2Cu[N(CN)2]Br. Our data exhibit well
defined, reproducible flux jumps: two successive measure-
ments under the same field sweep conditions give identical
patterns of jumps. The torque technique that we have used
allows for an almost continuous, quantitative registration
of the magnetization, in contrast to SQUID magnetometer
measurements. Also, we believe that this technique limits
uncontrolled perturbations and scattering of the data. We
show that the model by Mints accounts successfully for
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Fig. 1. Magnetic moment during field sweep experiments (low
thermal coupling, Tb = 1 K). Bottom to top: µ0dHe/dt = 0.06,
0.1, 0.14, 0.18, 0.22, 0.26, 0.3, 0.34, 0.38, 0.42, 0.46 and 0.5
T/min. Insert: 0.14 T/min.

our data, and that an anomalous saturation and subse-
quent decrease of the magnetization with increasing field
sweep rate observed at high rates may be understood
within the same model.

The magnetization of the single crystal was measured
using a capacitive torque experiment mounted on a dilu-
tion fridge. The temperature was measured directly on the
metallic, highly conductive electrode which supports the
sample. The magnetic field is applied at θ = 20◦ from the
normal to the superconducting planes of the layered com-
pound. Within the two dimensional approximation for this
highly anisotropic material [12], the magnetic moment of
the sample for a field He applied perpendicularly to the
superconducting layers is:

m(He) = Γ (He/ cos θ)/He tan(θ) (1)

where Γ (H) is the torque for a magnetic field H applied
at the angle θ. In the rest of the text, the magnetic mo-
ment displayed is the one given by this formula, i.e. the
one for the gedanken experiment where the field is ap-
plied perpendicularly to the superconducting layers. Fig-
ure 1 shows the magnetization of a large single crystal
780× 660× 180 µm3 where the smallest dimension is the
one transverse to the superconducting planes. In the fol-
lowing, we assimilate the sample to cylinder of radius R
and length L, the exact geometry affecting the results by
a numerical factor close to unity. In this first set of ex-
periments, the sample was glued on its larger side to the

capacitance electrode using a thick layer of vacuum grease
(this set of experiments will be referred to as “low ther-
mal coupling”). The magnetic moment exhibits periodic,
well defined jumps to zero value when the magnetic field
is swept at a constant rate. We have checked that the
angle θ of the applied field has no influence on the mag-
netization deduced from the torque signal. A temperature
rise of the metallic electrode is observed after each mag-
netization jump due to the sudden heat release related to
the magnetization jump, but the nominal temperature is
always recovered well before the following jump (Fig. 2).
The sweep rate modifies the recovery m(He) curve after a
jump for a given field. In particular, it affects strongly the
value of the field beyond which no instability subsists. A
careful examination of the signal allows one to distinguish
features in agreement with the magnetothermal instabil-
ity model. First, the magnetization after a jump relaxes to
zero (the “incomplete jumps” to a non zero value shown in
Figure 1 are due to the finite sampling rate of the torque
signal, µ0∆He = 1 mT) in agreement with a temperature
rise of the sample to a value where the screening current
is negligible. Then, the jumps occur at a field at which the
magnetization of the sample is still increasing with the ap-
plied field, showing that the sample has not reached a fully
critical state. Finally, for fields just above the critical field
at which no jumps are observed any longer, the magne-
tization tends to saturate to an almost field independent
value, showing that the full critical state has been reached
close to the vanishing of the instabilities. As shown by
Mints [7], the sweep rate affects the instabilities due to
the non-linear electric field characteristic E(J). This is
due to the increase of the differential resistivity, dE/dJ ,
and, hence, of the dissipated power, with increasing sweep
rate. In a recent paper, he has determined the instability
criterion in the case of a power law:

E = E0(J/J0)n (2)

where E0 and J0 are some characteristic electric field and
current density. In the case of a thermally activated resis-
tivity ρ = ρ0 exp(−U(J)/kT ), where U(J) is the activa-
tion energy, and in the limit of large current and large n,
this is formally equivalent to a logarithmic dependence:

U(J) = U0Ln(J0/J), n = U0/kT � 1. (3)

As pointed out by Mints, the logarithmic form is known
to be a good approximation for the more sophisticated
dependencies inferred from various models, in the limit of
large current densities. We shall use here such an approx-
imation, as was done in [7]. Here, we should be clearly
in the “dynamic” approximation where the magnetic flux
diffusion constant related to vortex motion, DM , is much
smaller than the thermal one, DT . Indeed, the magnetic
flux diffusion constant may be expressed as:

DM = µ−1
0 ρ = µ−1

0 dE/dJ (4)

(SI units, as for the following). The derivative dE/dJ dur-
ing a field sweep experiment may be evaluated straightfor-
wardly. The electric field during a field sweep experiment
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Fig. 2. Full line: magnetic moment during a
field sweep experiment. Dashed line: temper-
ature of the electrode (high thermal coupling,
0.69 T/min).

is, for a cylindrical sample:

E ≈
1

2
µ0RḢe (5)

where Ḣe is the time derivative of the applied magnetic
field. Using the definition of the dynamic relaxation rate
as given in [13]:

Q = dLn(m)/dLn(Ḣe) (6)

we obtain:

ρ ≈
1

2
µ0RQ

−1J−1Ḣe. (7)

Taking the values: µ0Ḣe ≈ 10−2 Ts−1, R ≈ 10−4 m,
J ≈ 108 Am−2 and Q−1 ≈ 10 as will be seen in the
rest of this study, we obtain the typical resistivity of a
field sweep experiment in our case: ρ ≈ 10−13 Ωm. The
thermal diffusion constant is:

DT = κ/C (8)

where κ is the thermal conductivity and C is the thermal
capacity which may be estimated from values at 1 K in the
literature: C ≈ 10 Jm−3K−1 [14] and κ ≈ 1 WK −1 m −1

[15]. These estimates result in a ratioDT /DE ≈ 105 show-
ing that the redistribution of the magnetic flux during an
instability is much slower than the heat diffusion through
the sample, so that the sample temperature is essentially
uniform. A similar conclusion was obtained from the con-
sideration of the parameter values in the high tempera-
ture superconductors in [7]. It should be noticed that this
should be valid also in the limit T → 0, as one expects a
diverging ratio κ/C, limited only by the phonon mean free
path cutoff. We now may derive the field increase between
two consecutive instabilities. The general criterion for the
instability onset is [7]:

nK−1

∫
E

∣∣∣∣∂J∂T
∣∣∣∣ dV = 1 (9)

where the integral extends over the sample volume. K is
the heat transfer coefficient between the cooling capaci-
tance electrode and the sample. It relates the heat flux
through the thermal link to the temperature difference
between the sample (assumed uniform in the dynamic ap-
proximation) and the electrode:

P = KδT. (10)

In the rest, Tb = T − δT denotes the temperature of
the bath. The heat transfer coefficient cannot be known
a priori and depends on the temperature, the thickness
of the thermalizing material as well as on the nature of
the boundary surfaces. However, it may be assumed con-
stant at a given temperature. For a cylindrical sample,
equation (9) yields:

Hj =
(

2J2K/πµ0LRnḢe|∂J/∂T |
)1/2

. (11)

Here, it was assumed that the current density inside the
sample is uniform, i.e. the field dependence of the screen-
ing current on the scale of the field for full magnetic pene-
tration of the sample (H∗) is negligible (this is clearly not
so for larger field variations, as can be seen in Figure 3
showing a strong decrease of the screening current with
the applied field).

No instability can occur as soon as Hj > H∗, as the to-
tal dissipated power is determined in this case only by the
product JḢe and decreases with the applied field. This is
achieved when the screening current density is low enough,
which may be realized for the higher magnetic fields, as
shown in Figure 1. For the same reason, the recovery mag-
netization curve after a jump tends to saturate to a field
independent value at the higher fields, while the jump oc-
curs on an increasing m(H) curve for the lower ones.

The use of equation (11) requires the knowledge of
the screening current density, the non-linearity coefficient
n ≈ U0/kT and the temperature derivative ∂J/∂T . The
determination of these parameters from the curves in
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Fig. 3. Screening current density during field sweep experi-
ments (high thermal coupling, 0.6 T/min). From top to bot-
tom: Tb = 0.7 to 1.5 K by step of 0.1 K. Insert: same data as
a function of the temperature.
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Fig. 4. Dynamic relaxation rate, Q = dLn(m)/dLn(dHe/dt)
(High thermal coupling). a) Tb = 1 K, b) Tb = 0.6 K. The
arrows indicate the transition to the unstable regime when the
sweep rate is increased further.

Figure 1 is not possible, as a full critical state cannot
be established as long as instabilities occur. Equation
(11) shows that magnetothermal instabilities may be sup-
pressed by an increase of the heat transfer coefficient or
the use of thin samples. To this purpose, in a second ex-
periment (referred to as “high thermal coupling”), the
thickness of the vacuum grease layer used to thermalize
the sample was reduced. We have observed in this case a
strongly reduced occurrence of the instabilities. As a re-
sult, using the data from above H∗, we could derive the
screening current density as well as its temperature deriva-
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Fig. 5. Plot according to equation (11) for the field increase
between two consecutive jumps in Figure 1.

tive for most of the field and sweep rate ranges shown in
Figure 1 (Fig. 3). The activation energy and, hence, the
non-linearity coefficient may be obtained from the field
sweep experiments. As demonstrated in [13], the flux creep
equation may be written as:

U = kTLn

(
2ν0He

RḢe − (ΛL/πµ0)(∂J/∂t)

)
(12)

whereΛ is the self inductance of the cylindrical sample and
ν0 is the velocity of flux lines in the flux flow regime. Using
equations (6, 12) where we neglect the second term in the
denominator (this can be checked using Λ ≈ µ0RLn(R/L)
and the data in Fig. 3), the dynamic relaxation rate may
be expressed as:

Q ≈ −kT

(
dU

dLnJ

)−1

. (13)

In the case of a logarithmic activation energy (Eq. (3)),
equation (13) shows that Q should be independent of the
sweep rate. As can be seen in Figure 4a, this is a good ap-
proximation for the higher magnetic fields, while there is
a pronounced downwards curvature for the smaller fields
and higher sweep rates. As will be seen below, this does
not invalidate the following analysis and we shall assume
that U(J) may be described locally by a logarithmic de-
pendence such as the one given by equation (3). Accord-
ing to the discussion above, this is valid provided that
n ≈ U0/kT ≈ Q−1 � 1, which can be checked readily
from the data in Figure 4a. Doing so, we may now apply
equation (11), which predicts that H2

j should be propor-

tional to the quantity J2Q/Ḣe|∂J/∂T |, the proportional-
ity factor being dependent only upon the dimensions of
the sample and the thermal coupling constant. We have
determined Hj at three different fields in Figure 1 and
plotted the data in this way. The three sets of data are
found to coincide roughly on a single straight line, as ex-
pected (Fig. 5). The slope of the line may be used to
evaluate the thermal coupling constant. This parameter
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is useful in the determination of the actual temperature
of the sample during a field sweep experiment. Equating
the cooling power to the dissipated energy during a field
sweep, the temperature difference between the coolant and
the sample is given, for H ≥ H∗, by:

δT = µ0ḢeK
−1m(He). (14)

From the plot in Figure 5, we estimate K = 1 ×
10−7 WK−1 for the first experiment. As an example, the
temperature difference between the sample and its holder
at the last jump for the lowest and highest sweep rates
shown in Figure 1 is found respectively δT = 0.05 K and
δT = 0.07 K. We now show that, although this tempera-
ture difference is small as compared to the nominal tem-
perature, it can result in dramatic effects on the apparent
flux line dynamics, even in the absence of any instability.

Let us consider the dynamic relaxation rate in the
high thermal coupling experimental configuration, at T =
0.6 K, for which the higher sweep rates induce instabili-
ties at the lower fields (Fig. 4b). As shown in Figure 4b,
Q clearly decreases for increasing sweep rate. In addition,
for the lower magnetic fields, Q tends toward zero and,
for sweep rates at which it would extrapolate to negative
values, instabilities similar to the ones described in the
low thermal coupling configuration are observed. The de-
crease towards zero is highly anomalous. As stated above,
the exact dependence of the dynamic rate upon the sweep
rate is determined by the current dependence of the ac-
tivation energy. For a given U(J) dependence, equations
(12, 13) allow for the determination of Q as a function of

Ḣe. As an example, here are the expressions for Q, using
the main functional dependencies for U(J) encountered in
the literature:

U(J) = U0(1− J/J0), Q−1 = U0/kT − Ln(He/τḢe),

U(J) = U0Ln(J0/J), Q−1 = U0/kT

U(J) = µ−1U0[(J0/J)µ − 1], Q−1 = U0/kT + µLn(He/τḢe).
(15)

In a more general way, Q−1 should be finite in the limit
J → J0. Our observation that the instabilities occur as
soon as Q reaches zero suggests that the decrease of this
quantity is related to the proximity of the unstable regime.
Taking into account the sample heating, equation (13)
must be replaced by:

Q = −kT (∂U/∂Ln(J))−1

+ (∂Ln(J)/∂T )(∂T/∂Ln Ḣe). (16)

The correction brought in equation (16) by the difference
between the temperature of the sample and the one of the
electrode is likely at the origin of the downwards curvature
observed in Figure 4a. As a consequence, the value de-
rived for n, using equation (13), might be also affected by
heating. The observation of the linear behavior in Figure 5
suggests that this had little influence on the determination
of the heat transfer coefficient. Finally, using equations
(14, 16) and H∗ = Hj = JR as the stability criterion, it is
easy to show that equation (11) reduces indeed to Q = 0.

In this way, the stability criterion presents a striking
similarity with the predictions made for flux avalanches.
Recently, an increasing number of theoretical, as well as
experimental works have pointed out that the relaxation
in superconductors may be affected by the presence of
avalanches. Bean’s critical state is known to be a “self-
organized critical” state. It was pointed out by Tang [16]
that such a system should present avalanches, which may
be viewed as fluctuations around a stationary state. Their
typical size should diverge as the system approaches the
critical state (J → J0). As pointed out in [17,18], the
avalanches should control the relaxation from the critical
state mostly at short times, as the increase of the activa-
tion energy away from the critical state prevents the for-
mation of large avalanches. The equivalent for short time
in our case is the large sweep rate (for the higher sweep
rate, we evaluate the equivalent time for a relaxation ex-
periment to 10−4 − 10−3 s, following [13]). It was shown
also in [17,18] that the presence of avalanches should result
in a diverging, negative effective activation energy as J ap-
proaches J0. Such a statement, in view of equation (12),
is similar to our finding that the dynamic relaxation rate
should be zero at the instability threshold. The derivative
of the effective activation energy with respect to current
is obtained easily from equation (13, 16):

∂Ueff (J)

∂J
=
∂U(J)

∂J

[
1−

δT

T

U(J)

kT

]−1

(17)

where δT is given by equation (14). This shows explicitly
that, although δT � T , the internal heating can result in
a dramatic change of the critical state dynamics, eventu-
ally reaching a catastrophic magneto-thermal instability.
This should be true also for relaxation experiments which,
although performed in the sub-critical regime, may be
strongly affected. Thus, in several aspects, magnetization
experiments on samples with a finite thermal coupling to
the environment present similarities with the predictions
for avalanches. The physics involved is however very dif-
ferent. In particular, in the case studied here, there is an
additional feedback mechanism, through the sample tem-
perature, with respect to the avalanche mechanism. More-
over, the consideration upon the ratio of the magnetic and
thermal diffusion constants shows that avalanches cannot
be due to a temperature rise on the scale of the flux line
lattice spacing, following a vortex jump in the flux creep
regime. Thus, the consideration of an adiabatic avalanche
mechanism, as proposed in [19], is not justified.

The authors wish to thank P. Batail for elaborating the sample
and I.A. Campbell for the great benefit of discussions.
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